Cascade

Presented at 12th LICA Conference, Stony Brook, April 5, 2007

Regional Applications

Engineering Activities

Long-term Morphology Response

What is Cascade?

Regional longshore transport and beach change model that incorporates:

- Regional trends
- Multiple, interacting projects
- Inlet sediment storage and transfer
- Sources and sinks (beach nourishment, washover, breaching, wind-blown sand, cliff erosion, etc.)
- Jetty construction (impoundment, bypassing)
- Navigation channel maintenance
 - Large-scale gradients in forcing; long-term trends (e.g., relative sea level rise, increased storminess)

Why is the model called "Cascade"?

- Sediment transport & coastal evolution occur at many different scales:
 - Near-term (months to years) and local;
 - Mid-term (years to decades) and project scale;
 - Long-term (decades to centuries) and regionalscale; cumulative project response.
- Interaction between coastal evolution at different scales may be described through a <u>cascading approach</u>

Cascade --Able to leap across multiple inlets, channels, river mouths, beaches, barrier islands, etc., in a single (& fast) bound

Morphological features that can be described in Cascade

Components of Cascade

Modules in Cascade

- Wave transformation
- Longshore current & sediment transport
- Inlet sediment storage & pathways
- Jetty bypassing
- Sediment sources and sinks
 - nourishment, dredged material placement
 - Sediment volume conservation

Simulation of Shoal and Bar Volumes

What are the differences between Cascade and GENESIS?

Cascade

- Planning-level tool
- Time scales: 1 to ~100 yrs
- Can model multiple inlets and barrier islands; cumulative inpacts

GENESIS

- Engineering Design Tool
- Time scales: 2-50 yrs
- Cannot transverse inlets

Cascade can provide boundary conditions for project-scale GENESIS modeling

Test Sites for Cascade Development and Validation

Completed Research Applications

- South Shore of Long Island (Montauk Point to Fire Island Inlet), NY
- Ocean City Inlet with Fenwick and Assateague Island (Cape Henlopen to Chincoteague), Delmarva Peninsula

Future applications

Texas coast

Other? – searching for partners

Long Island, NY

Shoreline Evolution, South Shore o Long Island (125 years)

WIS Stations Along Long Island (old WIS)

Calculated Net Longshore Sediment Transport Along the South Shore of Long Island

Recorded Changes in Inlet Cross-Sectional Area at Shinnecock Inlet and Moriches Inlet

Simulation of Shoreline Evolution Long Island, 1931-1983

Simulation of Shoreline Evolution at Long Island, 1931-1983 (detail)

Simulation of Ebb Shoal Dredging, Shinnecock Inlet

Response of Downdrift Shoreline Position in Response to Dredging, Shinnecock Inlet

Upcoming effort: Spit BC in Cascade

Fire Island Inlet, Long Island
-- is the terminus of a long barrier chain

Cascade Ecological Sub-Module in Development

Piping Plover Habitat & Population Dynamics

Westhampton Dunes, NY

Cascade: Conclusions

- Sediment transport & coastal evolution occur at many different scales with implications for modeling – need Cascading approach
- Engineering projects require considerations at regional scale, → dictating need for modeling processes & controls at this scale
- Cascade can simulate coastal evolution within complex regional trends, including inlet sediment storage & transfer, engineering activities, & structures

Cascade: Future Development

- Inlet module modifications
 - -modify downdrift sediment release (attachment bar)
- Spit evolution
- Barrier island migration (washover)
- Transport relationships
 - regional sediment transport
 - wind-blown sand transport
 - cliff erosion
- Sediment exchange with offshore
- Long-term forcing
 - relative sea level change
 - consolidation of substrate

